Cumulative probability distribution of circular distributions.
pvm(u, m, k, rads = FALSE)
pspml(u, mu, rads = FALSE)
pwrapcauchy(u, m, rho, rads = FALSE)
pcircpurka(u, m, a, rads = FALSE)
pcircbeta(u, m, a, b, rads = FALSE)
pcardio(u, m, rho, rads = FALSE)
pcircexp(u, lambda, rads = FALSE)
pcipc(u, omega, g, rads = FALSE)
pgcpc(u, omega, g, rho, rads = FALSE)
pmmvm(u, m, k, N, rads = FALSE)
The probability that of u being less than \(\theta\), where u follows a circular distribution.
A numerical value, either in radians or in degrees.
The mean direction of the von Mises and the multi-modal von Mises distribution in radians or in degrees.
The mean vector, a vector with two values for the "pspml".
The location parameter of the CIPC and GCPC distributions.
The norm of the mean vector for the CIPC and GCPC distributions.
The concentration parameter, \(\kappa\).
The \(\lambda\) parameter of the circular exponential distribution. This must be positive.
The \(\alpha\) parameter of the circular Purkayastha distribution or the \(\alpha\) parameter of the circular Beta distribution.
The \(\beta\) parameter of the circular beta distribution.
The \(\rho\) parameter of the Cardioid, wrapped Cauchy and GCPC distributions.
The number of modes to consider in the multi-modal von Mises distribution.
If the data are in radians, this should be TRUE and FALSE otherwise.
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
This value calculates the probability of u being less than some value \(\theta\).
Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.
Barnett M. J. and Kingston R. L. (2024). A note on the Hendrickson-Lattman phase probability distribution and its equivalence to the generalized von Mises distribution. Journal of Applied Crystallography, 57(2).
Jammalamadaka S. R. and Kozubowski T. J. (2003). A new family of circular models: The wrapped Laplace distributions. Advances and Applications in Statistics, 3(1): 77--103.
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70--83
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics--Theory and Methods, 19(6): 1973--1986.
Paula F. V., Nascimento A. D., Amaral G. J. and Cordeiro G. M. (2021). Generalized Cardioid distributions for circular data analysis. Stats, 4(3): 634--649.
Zheng Sun (2009). Comparing measures of fit for circular distributions. MSc Thesis, University of Victoria. file:///C:/Users/mtsag/Downloads/zhengsun_master_thesis.pdf
group.gof, dvm, dcircexp,
purka.mle, dcircpurka, dmmvm
pvm(1, 2, 10, rads = TRUE)
pmmvm(1, 2, 10, 3, rads = TRUE)
pcircexp(c(1, 2), 2, rads = TRUE)
pcircpurka(2, 3, 0.3)
Run the code above in your browser using DataLab